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REVIEW ARTICLE

Vitamin K also includes a few synthetic forms. Vitamin K3 
(menadione) is a synthetic form of vitamin K having no substituent 
at the C3 position. It acts as a provitamin and is water soluble. 
Due to the high risk of allergic reactions and toxicity like neonatal 
brain damage secondary to free radical generation, it is not 
recommended for human use. It is also used as a feed additive 
for animals.10 Despite being banned by the Food and Drug 
Administration in the United States, the pharmaceutical formulation 
of vitamin K3 (an injection) for human use is still available in some 
countries including India.11 Vitamin K4 and K5 are also synthetic and 
possess anticancer properties.

Vi ta m i n K
Vitamin K acts as a cofactor for enzymes that activate vitamin-K-
dependent proteins involved in important physiological functions 
involving regulation of blood coagulation, prevention of vascular 
calcification, bone metabolism and modulation of cells.1,2 It is a 
fat-soluble vitamin characterized by the presence of a 2-methyl-1, 
4-naphthoquinone ring (Fig. 1).3

Vitamin K1 (phylloquinone or phytonadione or phytomenadione) 
and K2 (menaquinone) are two naturally occurring forms. Vitamin 
K1 contains a phytyl side chain at the C3 position. It is available in 
India in both injectables (1 mg/0.5 mL and 10 mg/1 mL vials) and 
oral formulations (10 mg tablets).

Vitamin K2 (menaquinone-MK) containspolyprenyl side chain 
at the C3 position. It has several isoforms depending on the length 
of the side chain, which ranges from 4 to 13. It is denoted as MK-n 
(n is the number of unsaturated β-isoprenoid units in the chain).4 
Menaquinone-4 (MK-4) is the most active isoform and provides 
protection from osteoporosis to pathologic calcification. Mammals 
including humans can themselves synthesize some amount of MK-4 
from Vitamin K1. Vitamin K2 is also produced in the gastrointestinal 
tract by the resident bacterial flora, but their bioavailability is low.5–7

Vitamins K1 and K2 have different tissue distribution and 
bioavailability. Vitamin K1 and MK-4 were present in the plasma for 
8–24 hours after administration. Bioavailability is also dependent on 
vitamin K sources.8 The amount of absorbed Vitamin K1 from vegetable 
products is lower than the equivalent dose given as a supplement.9
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Fig. 1: Chemical structure of different forms of vitamin K; from Bus K, Szterk A. Relationship between structure and biological activity of various 
vitamin K forms. Foods 2021;10(12):3136
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encoding bilirubin conjugation (Fig. 2). Environmental triggering 
a G6PD-deficient individual initiates hemolytic process producing 
sufficient amounts of bilirubin in an auto-cascade pattern to 
overwhelm the liver’s conjugative capacity.16 Trigger factor-induced 
acute hemolysis following definite triggers like fava beans and 
primaquine are beyond doubt.17,18 Out of the 73 children with a 
G6PD deficient state who presented with severe hemolytic anemia 
in Mayotte, France (2013–2020), there was no case where any drugs 
(vitamin K or others) were found as triggers while ingestion of fava 
bean ingestion was found in only one child.19

ne w b o r n s a n d G6PD  de f i c i e n c y
Hyperbilirubinemia resulting from G6PD deficiency is well 
documented in the newborn period. Concerns have been raised 
regarding the role of vitamin K as one of the possible drugs 
triggering hemolysis in G6PD deficient infants by decreasing 
glutathione concentrations in normal infant erythrocytes.20 Studies 
based on hematological markers of hemolysis have confirmed 
higher rates of hemolysis secondary to trigger factors in neonates 
with G6PD deficiency than in G6PD normal neonates. It is usually 
mild to moderate in relation to the degree of hyperbilirubinemia 
and is not commonly associated with anemia.21,22 Three publications 
provided limited evidence of harm with the use of vitamin K in G6PD 
deficient subjects.23–25 Of the 30 G6PD deficient neonates, only 
four treated with vitamin K and two with no treatment became 
jaundiced in a randomized controlled trial to receive vitamin K or 
no treatment.24

However, few reports of massive acute hemolysis, severe 
anemia, and hyperbilirubinemia require plasma exchange as rescue 
therapy in the newborn period in both term and preterm newborns 
who received four Vitamin K1. Causal association with Vitamin K1 
administration could be established in none, as the episodes of 
severe hemolysis did not occur until 5–11 days after the Vitamin 
K1 dose.23 Hyperbilirubinemia in neonates with G6PD deficiency 
is postulated to be secondary to the interplay of reduced hepatic 

nat u r a l so u r c e s
Plant sources such as green leafy vegetables (spinach, broccoli, 
and cabbage) and vegetable oils (olive, rapeseed, soybean oil, and 
margarine) mainly contain phylloquinone (Vitamin K1). Dairy and 
poultry products are the main sources of menaquinone (vitamin 
K2) in the form of MK-4. Fermented products such as cheese, curd 
etc. have a high content of long-chain menaquinones as longer 
isoprenoid chains (MK-6, MK-7, and MK-9) are produced by bacteria. 
Antibiotics decrease the production of vitamin K2 by interfering 
with normal gut flora.12

G6PD de f i c i e n c y
The enzyme glucose-6-phosphate dehydrogenase (G6PD) is present 
in all cells of the body. It has a pivotal role in the body’s antioxidative 
defence. G6PD is required for the generation of nicotinamide adenine 
dinucleotide phosphate (NADPH), which maintains glutathione in the 
reduced form, to counteract the oxidant stresses on the erythrocyte. 
It catalyzes the first step in the hexose monophosphate pathway and 
is responsible for the reduction of NADP to NADPH. NADPH itself acts 
as a hydrogen ion donor, reverting in the process to NADP. These 
hydrogen ions contribute to the stability of catalase (an important 
antioxidant) converting oxidized glutathione to its reduced form. The 
latter neutralizes oxidants by itself becoming oxidized. The newly 
formed NADP must once again be converted to NADPH in order for 
the process to continue.13 The primary effects of G6PD deficiency 
are hematological because the erythrocytes have no alternative 
source of NADPH.

The G6PD deficiency is inherited as an X-linked Mendelian 
pattern.14 According to a recent meta-analysis overall magnitude of 
the frequency of G6PD deficiency is 8.5% in the Indian population.15

Hemolytic anemia and methemoglobinemia are known 
complications in patients with G6PD deficiency. It can be triggered 
by various oxidative stressors like drugs, food and metabolic state. 
Jaundice in G6PD-deficient individuals is an interplay between 
the G6PD-deficient state, environmental factors and genes 

Fig. 2: Interplay of various factors in the pathogenesis of hyperbilirubinemia in G6PD deficient subjects; adapted from Kaplan (2010). G6PD 
deficiency and severe neonatal hyperbilirubinemia: a complexity of interactions between genes and environment. Seminars in fetal and neonatal 
medicine, 148–156
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deficient state with an accumulation of oxidants due to hepatic 
dysfunction.41,42 Inverse correlation (inverse) between the sudden 
decrease in hemoglobin and hepatitis E viral RNA load suggests 
that HEV-RNA levels may be associated with the occurrence of 
haemolytic anemia in G6PD deficient patients.41

Prospective studies in children suffering from chronic hepatitis 
B with and without G6PD deficiency have shown abnormally low 
levels of glutathione in the course of the disease, reverting to normal 
after recovery.43,44 Partially oxidative metabolites are released in 
infectious hepatitis which decreases glutathione in erythrocytes. In 
the G6PD deficient state, there is preexisting decreased capacity of 
deficient erythrocytes to reduce the oxidized glutathione. Further 
lowering of glutathione in hepatitis results in RBC destruction due 
to impaired integrity of G6PD deficient RBCs.Following infection 
with the hepatitis virus, patients with G6PD deficiency and lower 
than normal glutathione and NADPH levels present with massive 
haemolytic anemia.45 If this assumption is true, hemolysis should 
be proportional to the extent of hepatocytic injury—the severe the 
injury, the higher the release of oxidative metabolites, though the 
interplay of genetic, and etiologic environmental factors like intake 
of complementary and alternate drugs impacts the clinical course. 
By this assumption, hemolysis in a G6PD deficient state with hepatitis 
is attributed more to oxidative products, secondary to hepatocyte 
injury rather than to vitamin K administration. Some report decreased 
osmotic fragility during the initial phase of viral hepatitis, though its 
exact mechanism is yet to be elucidated. Macrocytes and target cells 
may contribute to the lowering of osmotic fragility.46 

The association of the other infections with G6PD deficiency 
is also reported in the literature. Case report of dengue fever 
complicated with acute hemolysis, methemoglobinemia, hepatitis, 
and rhabdomyolysis in G6PD deficient state adds support to 
oxidative stress being the trigger rather than vitamin K.47 Though is 
no direct association between G6PD deficiency and dengue severity 
or viral replication through altered redox state of dengue virus 2 
infected monocytes from G6PD-deficient individuals appears to 
augment viral replication in these cells.48 Also, dengue virus 2 
infected G6PD-deficient individuals may contain higher viral titers, 
which may be significant in enhanced virus transmission along with 
granulocyte dysfunction.49

There have been four anecdotal case reports of the first episode 
of G6PD deficiency-associated hemolysis and methemoglobinemia 
after acquiring COVID-19 infection, with no recent exposure to 
oxidative drugs, vitamin K or fava beans.50,51 There have been 
reports of G6PD deficiency-related hemolysis being triggered by 
bacterial infections (mainly pneumonia) and viral upper respiratory 
tract infections without administration of vitamin K.52

Thus, all cases of anemia in a child with viral hepatitis and other 
infections should always be carefully evaluated for the suspected 
underlying hemolytic state.

au t h o r’s Vi e w p o i n t

• Mild to moderate degree of hemolysis is a known complication 
of acute viral hepatitis (A, B, or E). Severe hemolysis may be 
encountered more frequently in patients with coexisting 
G6PD deficiency. We postulate that viral infection itself can 
provoke severe hemolysis in enzyme-deficient patients. G6PD 
deficient state with concomitant hepatocytic injury produces 
additional oxidative stress which triggers intravascular 
hemolysis. There is very little evidence that vitamin K is the 
real culprit alone.

conjugation and excretion of bilirubin.14,26–28 rather than only 
increased bilirubin production resulting from hemolysis.28

Many G6PD deficient newborns, following discharge as a 
healthy newborn or after resolution of neonatal hyperbilirubinemia 
requiring birth hospitalization phototherapy, develop a sudden 
and exponential increase in serum bilirubin to neurotoxic 
concentrations requiring readmission. The majority of these cases 
have identifiable triggers.16 Extreme neonatal hyperbilirubinemia 
following discontinuation of phototherapy in G6PD-deficient 
newborns is often in a continuum with or an exacerbation of the 
earlier, more moderate process and the two entities are closely 
interrelated. It can be explained by the resumption of the rate of 
bilirubin rise similar to that before phototherapy was initiated.29

in f e c t i o n s a n d G6PD de f i c i e n c y
Intravascular hemolysis at presentation is encountered in 1.5–4% 
of children with acute viral hepatitis in children,30,31 though the 
etiology of hemolysis was not well described in these studies. 
Underlying G6PD deficiency is often said to be unmasked during 
such episodes where there is the usual practice of administering 
vitamin K. There were initial reports of intravascular hemolysis 
in G6PD deficient patients precipitated by vitamin K.32 However 
follow-up studies show that only one-third (36%) of those with 
intravascular hemolysis during acute viral hepatitis are confirmed 
to be G6PD deficient and another 7% show direct Coomb’s test 
positivity.33 Even with acute concomitant hemolysis, fat-soluble 
vitamin K (phytonadione) is a safe alternative in such patients with 
acute viral hepatitis (AVH).20

The degree of hyperbilirubinemia in AVH has been shown to be 
more pronounced with the erythrocyte defect conditions. In a study 
of 125 cases of viral hepatitis, 16 subjects with a G6PD deficient state, 
five with β-thalassemia trait and remaining 104 non-G6PD deficient 
were included. Hemolysis was observed in 23% (24 of 104) of the 
nondeficient subjects, 87% (14 of 16) of those with G6PD deficiency, 
and 80% (four of five) of the β-thalassemia heterozygotes. Moderate 
and severe hemolysis occurred only in 37% (six of 18) children 
with G6PD deficiency and in 60% (three of five) with thalassemia 
trait. Hemolysis was only mild in nondeficient patients. Literature 
witnessed various reports of hemolysis occurring in children with 
the Mediterranean variant and Negros with G6PD deficiency, during 
the course of both acute and chronic viral hepatitis.34,35 G6PD 
deficiency or thalassemia trait potentially modifies the clinical 
course of viral hepatitis by favoring the induction of hemolysis 
and hyperbilirubinemia.36 Recently, a case of acute hepatitis B 
infection precipitated severe hemolysis and renal failure in an 
undiagnosed G6PD deficient patient and treatment with entecavir 
caused marked improvement.37 Early recognition and diagnosis of 
complicated hepatitis B infection leading to severe hemolysis and 
renal failure allowed prompt treatment with antiviral drugs along 
with supportive treatment for G6PD deficiency.

Both acute and chronic phases of hepatitis E infection show 
extrahepatic manifestations like anemia, including aplastic 
anemia, autoimmune/nonimmune hemolytic anemia, neurological 
complications, arthritis, pancreatitis, glomerulonephritis, 
cryoglobulinemia of hepatitis E virus (HEV)—induced anemia, 
including aplastic anemia and autoimmune hemoly tic 
anemia.36,38–40 More supportive evidence in the context of viral 
hepatitis-triggered G6PD deficiency comes from recent studies 
analyzing hepatitis E-induced hemolytic anemia where significantly 
reduced glutathione in the red blood cells (RBCs) in G6PD 
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